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Abstract: We investigate the question of distinguishing between different microstates of

the D1-D5 system with charges Q1 and Q5, by scattering off the system a supergravity

mode which is a minimally coupled scalar in the leading supergravity approximation. The

scattering is studied in the dual CFT description in the orbifold limit for finite R, where R

is the radius of the circle on which the D1 branes are wrapped. Even though the system has

discrete energy levels for finite R, an absorption probability proportional to time is found

when the ingoing beam has a finite width ∆E which is much larger than the inverse of the

time scale T . When R∆E À 1, the absorption crosssection is found to be independent of

the microstate and identical to the leading semiclassical answer computed from the naive

geometry. For smaller ∆E, the answer depends on the particular microstate, which we

examine for typical as well as for atypical microstates and derive an upper bound for the

leading correction for either a Lorentzian or a Gaussian energy profile of the incoming

beam. When 1/R À ∆E À the average energy gap
(

1/(R
√
Q1Q5)

)

, we find that in a

typical state the bound is proportional to the area of the stretched horizon,
√
Q1Q5, up

to log(Q1Q5) terms. Furthermore, when the central energy in the incoming beam, E0, is

much smaller than ∆E, the proportionality constant is a pure number independent of all

energy scales. Numerical calculations using Lorentzian profiles show that the actual value

of the correction is in fact proportional to
√
Q1Q5 without the logarithmic factor. We offer

some speculations about how this result can be consistent with a resolution of the naive

geometry by higher derivative corrections to supergravity.
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1 Introduction and summary

The two charge system, particularly in the duality frame in which it is a bound state of Q1
D1 branes andQ5 D5 branes, has served as a useful theoretical laboratory for understanding

the physics of black holes in string theory. In fact, this system (in the duality frame in

which this is a fundamental heterotic string with some momentum), provided the first

evidence that string theory states can account for black hole entropy [2].

When the D5 branes are wrapped on a T 5 and the D1 branes are wrapped on an

S1 (of radius R) contained in the T 5, the microscopic description of the system at low

energies is that of a (4, 4) superconformal field theory with a target space which is a

resolution of the orbifold (T 4)N/S(N), N = Q1Q5 [3–6].
1 In the orbifold limit, the SCFT

consists of N = Q1Q5 copies of free bosonic fields Xa and their fermionic partners ψα,

a = 1, .., 4;α = 1, . . . , 4, in various twist sectors corresponding to elements of S(N). Any

given element of S(N) can be described by multiple copies of the cyclic permutation Zn,
2

for various values of n = 1, . . . N (up to equivalence). A given twist sector, therefore,

corresponds to specific multiplicities Nn,µ (N ′n,µ) of the Zn twists acting on the bosons

(fermions), where µ = 1 · · · 4 denotes a polarization index. The numbers {Nn,µ, N
′
n,µ} are

constrained to satisfy

N
∑

n=1

nNn = Q1Q5 ≡ N, Nn ≡
∑

µ

Nn,µ +
∑

µ

N ′n,µ (1.1)

For periodic boundary condition around the circle, the SCFT is described by the Ramond

sector. The 2-charge system consists of the various degenerate Ramond ground states, one

from each twist sector. Thus the entropy of the 2-charge system is given by

S = logΩ (1.2)

where Ω is total number of twist sectors, or in other words the number of possible sets of

values of {Nn,a, Nn,α} subject to the condition (1.1). For large N , this is given by

S = 2π
√
2N (1.3)

In two derivative supergravity, the standard description of this system is in terms of a

string frame metric

ds2 = (f1(r)f5(r))
−1/2[−dt2 + dy2] +

(

f1(r)

f5(r)

)1/2

[dx21 + · · · dx24]

+(f1(r)f5(r))
1/2[dr2 + r2dΩ23] (1.4)

where the harmonic functions are given by

f1(r) = 1 +
r21
r2

= 1 +
16π4gsl

6
sQ1

V r2
f5(r) = 1 +

r25
r2

= 1 +
gsl

2
s Q5
r2

(1.5)

1For a compact review see appendix A of [17].
2The Zn twist acts on the bosonic or fermionic fields so that n copies are strung together into a “long

string” which lives in a circle of radius nR.
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We will call this the “naive” geometry. The dilaton and the gauge fields are

e−2Φ =
f5(r)

f1(r)
A01234y =

1

2
(1− f−15 ) A0y =

1

2
(1− f−11 ) (1.6)

Here ls is the string length, gs is the string coupling, R is the radius of the y direction and

V denotes the coordinate volume of the T 4 along the directions x1 · · ·x4. The area of the

horizon, at r = 0, vanishes because the size of the y direction vanishes here - so that there

is no Bekenstein-Hawking entropy. However, as was shown in [2], the area of the stretched

horizon, argued to appear from α′ corrections, reproduces the microscopic entropy up to a

numerical factor.

More recently it has been realized that once higher derivative terms in supergravity

are included, the naive geometry of similar 2-charge systems gets significantly modified: a

finite horizon develops and the Wald entropy of this latter geometry precisely agrees with

the microscopic answer [7, 8]. While this has not been shown for the D1-D5 system on

T 4 which we are considering, it is reasonable to expect that a finite horizon should again

develop and the Wald entropy would again agree, at least up to proportionality, with the

microscopic entropy.

The near-horizon geometry of (1.4) is locally AdS3 × S3 × T 4 with an identification

y ∼ y + 2πR. The AdS scale ` is given by

`4 = (r1r5)
2 =

16π4g2s l
8
sN

V
=

κ2N

4π3V
(1.7)

where κ denotes the ten dimensional gravitational coupling constant, related to ten dimen-

sional Newton’s constant G10 by κ2 = 8πG10. By virtue of the standard AdS/CFT corre-

spondence, string theory on this geometry is dual to the (4,4) SCFT on the resolved orbifold.

In a different direction, Mathur and collaborators have found smooth horizon-free solu-

tions of leading order supergravity corresponding to CFT states of the system [9, 10]. These

“fuzzball” solutions become identical to the naive geometry at large r, but start deviating

from it at values of r ∼ (Q1Q5)
1/6− which is where a stretched horizon should be located.

The fuzzball program has been extended to other systems for which the leading order su-

pergravity solution has a finite horizon area, e.g. the 3 charge system in five dimensions [11].

Geometries with horizons, e.g. the naive geometry (1.4) with a singular horizon, or

those with a regular horizon [7, 8] obtained in higher derivative supergravity, should be

in some sense [10] coarse-grained descriptions of the fuzzball geometries. It is clearly

important to understand the precise meaning of this averaging process. This issue has been

studied from various viewpoints, both in the present context of the D1-D5 system [17–19]

as well as in a similar context of BPS states in AdS5 [12–16]. In particular, [17] and [18]

studied correlation functions in the orbifold limit of CFT and showed that for typical

microstates and short time scales these are independent of the details of the microstate

and that they agree, under AdS/CFT, with the naive supergravity (BTZ) answers at short

time scales. The agreement does not work for atypical microstates or long time scales.

In this paper we investigate this problem from a different point of view. We consider

in detail the scattering of certain low energy supergravity probes off the D1-D5 system at a
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finite radius R and ask how, if at all, we can figure out the microstate-dependence from the

R-dependent absorption crosssection. The expectation stems from the fact that at finite R

the CFT spectrum is discrete3 and the nature of the discreteness carries information about

the specific microstate the system is in.

In carrying out this study, we encounter a subtlety, viz. that a system with discrete

energy levels never absorbs a monochromatic incident wave at a constant rate, i.e. the

probability of transition to an excited state never becomes proportional to time. One way

to obtain a constant rate is to consider a limit in which the final states are part of a

continuum, leading to Fermi’s Golden Rule. A second way is to consider an incoherent

incident beam with a specified central energy E0 and an energy spread ∆E [21]. We will

consider the latter method and use ∆E as a measure of the resolution of an experiment to

probe the discreteness of the system.

The supergravity field we consider is a traceless component of the ten dimensional met-

ric with both polarizations along the T 4 directions, with zero angular momentum along the

transverse 3-sphere. From the point of view of the six dimensional theory this mode behaves

as a minimally coupled massless scalar. We will compute the absorption cross-section in

the orbifold limit of the CFT. This calculation is almost identical to the absorption by the

D1-D5-P system calculated in [4, 22, 23]. In these papers, the absorption (or equivalently

Hawking radiation) was calculated in the large R approximation so that the final states

can be considered to belong to a continuum. In this limit, the microscopic answer agrees

exactly with the supergravity grey body factors in the relevant regime [24]. In the low

energy limit, the cross-section equals the area of the horizon, which is a special case of a

more general result [25]. Ref [24], in fact, shows that the agreement persists even when the

momentum P in the y direction vanishes, i.e. in the two charge D1-D5 system whose lead-

ing order supergravity solution has a vanishing horizon area. Indeed, it has been explicitly

shown in [26] that the cross-section vanishes at low energies linearly in the energy.

It is not completely clear why the above agreement between the orbifold limit calcu-

lations and the supergravity answers is exact. We have nothing to add to the existing

discussion of this issue in the literature (see e.g. [27]). In this paper we will take this agree-

ment as an empirical fact and compute effects of finite R staying entirely in the orbifold

approximation.

In this paper, we will not use the large R approximation, which requires a more careful

calculation of the microscopic absorption cross-section. There are several length scales in

the problem: R, `, E0 and ∆E. The semiclassical calculation of the cross-section is in the

regime where the energy of the incident wave is much smaller than 1/`. Since we are

interested in calculating the leading corrections to this answer, we will require

E0,∆E ¿ `−1 (1.8)

Because of orbifolding, the energy gap in a sector characterized by a twist n (see (1.1)) is

1/(nR). Clearly, when R∆E À 1, the discreteness of the spectrum is completely invisible

3It is important to distinguish finite R effects, which is our primary interest here, from finite N effects

(see section 5).
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and one would expect an answer completely identical to the semiclassical cross-section in

the naive geometry. This is explicitly demonstrated in sections (4.1) and (4.2). Similarly,

an incident wave with a ∆E much smaller than the smallest energy gap in a given twist

sector basically behaves as a monochromatic wave and there is no time independent ab-

sorption rate, as pointed out earlier. We therefore require ∆E to be much larger than the

average energy gap. The latter may be estimated by noting that in a typical state, Nn is

approximately given by the ”thermal” distribution for large values of N = Q1Q5 [17]4

Nn|typical =
8

sinhβn
(1.9)

where β is determined by the condition (1.1). For large N , the sum in (1.1) may be replaced

by an integral and β is approximately given by

β ≈ π
√

2

N
(1.10)

This leads to an average value of n, 〈n〉, given by

〈n〉 ∼
√
N (1.11)

Thus, for such typical states, the average energy gap is given by

δE ∼ 1

R
√
N

(1.12)

We will therefore work in the regime

1

R
À ∆E À 1

R
√
N

(1.13)

We will also require

E0R¿ 1 (1.14)

It is easy to check that these various regimes are mutually consistent. As we will show in

section (4.4), the corrections due to discreteness we calculate are suppressed by powers of

1/(R∆E
√
N).

To lowest order in the gravitational coupling constant, the basic process of absorption

is the creation of a pair of open string modes moving in opposite directions along the long

string of length 2πnR. For a Lorentzian profile of the incident beam, with central energy E0
and an energy width ∆E, we show that the rate of absorption becomes independent of time

for time scales much larger than the inverse of the energy resolution, T À 1/(∆E). This

is the regime of validity of Fermi’s Golden Rule. In addition, the effects of recombination

of the open string modes can be ignored if the time T is smaller than the time taken by

the pair to meet physically, which is πnR. For typical states, n ∼
√
N ; hence the lower

4Strictly speaking, since the l.h.s. of (1.9) is an integer, the r.h.s. should be replaced by, e.g., the nearest

integer. The numerical calculations in section 4 are performed after making such a replacement (the results

do not change appreciably, though). In the following we will understand (1.9) with this qualifier.
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and upper bounds on the time are consistent with the regime (1.13) provided we choose
1
R À ∆E À 1

T À 1
R
√
N
. These various time scales are explained in detailed in section (4.2).

As shown in [9, 29], the upper bound on the time scale is reproduced precisely in the

fuzzball picture. In this picture, the AdS throat of the naive geometry of (1.4) is replaced

by a capped throat so that all incoming waves eventually get reflected from the cap. For

a class of microstate geometries corresponding to a twist sector with all twists equal, [9]

and [29] showed that the reflection coefficient whose modulus is unity can be written as

a sum of terms which can be thought to arise from the wave entering the capped throat

region with some probability and suffering multiple reflections between the mouth of the

throat and the cap (the argument is briefly summarized in section 3). While the reflection

from the cap is perfect, that at the throat is not and every time part of the wave escapes

to the asymptotic region. One therefore obtains an infinite series of waves, separated by a

certain time delay, which all go back to asymptotic infinity. The time delay is in fact twice

the time taken by the wave to go from the mouth to the cap, which was computed in [9] to

be precisely πnR. It is clear from this discussion that a particular microstate will appear

to absorb the incoming wave for times which are smaller than this delay time. Note that

this discussion is modified significantly when we consider a ‘typical state’ where there are

long strings of various lengths. In this case the time delay would be much larger because of

interference effects of waves which get reflected from long strings of different lengths and

therefore have different time delays [30].

When the observation time lies in the regime discussed above, the absorption rate is

constant and an absorption cross-section can be defined. In this work, we examine the

behavior of this absorption cross-section as we vary the energy resolution. We find that for

R∆E À 1 the absorption cross-section is independent of the specific microstate,

σρ(E0,∆E)|R∆EÀ1 =
κ2N

4V
Kρ(E0,∆E)

∫ ∞

0
dE E ρE0,∆E(E) (1.15)

where ρE0,∆E(E) is the energy profile of the incoming incoherent beam and Kρ(E0,∆E)

is the normalization,

[Kρ(E0,∆E)]−1 =

∫ ∞

0
dE ρE0,∆E(E) (1.16)

This is in exact agreement with the semiclassical cross-section in the naive geometry (1.4).

We will be interested in two examples of the energy profiles

Lorentzian : ρL;E0,∆E(E) =
E

[(E − E0)2 + (∆E)2]2

Gaussian : ρG;E0,∆E(E) = E exp

[

−(E − E0)2
(∆E)2

]

(1.17)

For both these profiles, σρ(E0,∆E)|R∆EÀ1 ∼ `4E0 for ∆E ¿ E0, while for ∆E À E0,

σρ(E0,∆E)|R∆EÀ1 ∼ `4 (∆E), The naive geometry is thus detected regardless of the mi-

crostate, without the need for any averaging.

We then turn to the regime (1.13) and calculate the corrections to the above result

by a combination of analytical and numerical techniques. These corrections arise from

– 6 –
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the difference between certain sums which appear in the expression for the cross-section

and their integral approximations. These differences may be bounded from above using

McLaurin integral approximation methods. The result now depends on the details of the

microstate. For some special microstates we find that the N dependence of the correction

can be the same as that of the leading classical result, while for some other atypical states

the correction is suppressed by e−N .

Motivated by the expectation that geometries with horizons should appear as some

kind of average over microstates, we go on to examine these corrections in detail when the

microstate is typical, i.e. a microstate which approximates a thermal ensemble. For large

N , the result in such a microstate would be the same as the result obtained by averaging

over a thermal (equivalently, microcanonical) ensemble of microstates. We find that for

such typical microstates, the leading correction for E0R ¿ 1 is bounded as follows (see

section 4.4). For the Lorentzian profile defined in (1.17) we have

||σL(E0,∆E)− σL(E0,∆E)|R∆E¿1|| =
κ2
√
2

πV R
K̃L

(

E0
∆E

)

LL

(

E0
∆E

)√
N

×
[

1

2
log(N)− log

π√
2
+ η

]

(1.18)

where 0 < η < 1 and the functions K̃L(x) and LL(x) are given by

K̃L(x) =

[

1

2
+
x

2

(π

2
+ tan−1 x

)

]−1

LL(x) =
x2 + 1

(1 + (
√
x2 + 1− x)2)2

(1.19)

whereas for the Gaussian profile we have

||σG(E0,∆E)− σG(E0,∆E)|R∆E¿1|| =
8κ2
√
2

πV R
K̃G

(

E0
∆E

)

LG

(

E0
∆E

)√
N

×
[

1

2
log(N)− log

π√
2
+ η

]

(1.20)

where

K̃G(x) =
[

e−x
2

+ x
√
π(1 + erf(x))

]−1

LG(x) = (x+
√

4 + x2)2 exp

[

−1

4
(
√

4 + x2 − x)2
]

(1.21)

These are upper bounds. For the Lorentzian profile, we estimate the actual value of the

correction numerically, and also obtain a better analytical estimate for E0 = 0. We find

that the correction is actually proportional to
√
N without the log(N) factor, i.e. it is

proportional to the entropy. While we have not performed the numerical calculations for

the Gaussian profile we expect a similar answer in that case as well.

Furthermore, for both profiles, the dominant correction in (1.18) in the regime E0 ¿
∆E (in powers of (E0/∆E) ) is independent of all energy scales and simply proportional to

– 7 –
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κ25
√
N where κ25 = κ2/(V R) is the five dimensional gravitational coupling constant. This

quantity has precisely the form of the area of the stretched horizon and hence also of the

horizon in the solution found by [7] and [8] in higher derivative supergravity (albeit in a

different duality frame).

This is an intriguing result. While we do not have a precise understanding of this

correction in the supergravity side, this result suggests that it may be possible to obtain

this correction from a semiclassical calculation in these geometries. If this is indeed true,

in our scattering experiment averaging over microstates in the dual CFT corresponds to

the geometries corrected by the higher derivative corrections. As explained earlier, in our

system it does not require any averaging to obtain the naive geometry . This is in con-

trast with 3-charge geometries in five dimensions, where the ”naive” geometry has a finite

horizon and an averaging over microstates is necessary for the absorption cross-section to

reproduce this geometry.

We leave a detailed study of the gravity interpretation of our corrections for future

work. It would also be of interest to compare the corrections for specific microstates which

we obtain, with more detailed calculation of propagation of finite width wave packets in

the corresponding fuzzball geometries along the lines of [9] and [29]. This is also left

for future work.

Our calculation is closely related to the calculation of correlation functions in [17]. For

observation times which are larger than the lower bound 1/∆E, the amplitude effectively

respects energy conservation and the resulting cross-section is the Fourier transform of

the imaginary part of a suitable correlation function. In [17] it is shown that for time

scales much smaller than R
√
N , this correlation function becomes microstate independent

to leading order and equals the supergravity result in the zero mass BTZ black hole (which

is essentially the AdS3 geometry with the identification y ∼ y + 2πR). Note that this

upper bound for the time scale is precisely the time delay in a typical microstate geometry

of the type considered in [9] and is, therefore, the average upper bound of the time for

applicability of the Golden Rule. Our work, however, goes much beyond this and leads to

a calculation of the correction to the leading order result.

In section 2 we summarize known results of classical absorption in the naive 2-charge

geometry for a monochromatic wave and extend the calculation to arbitrary incoherent

energy profiles. In section 3 we review some aspects of the calculation of wave propagation

in special microstate geometries as in [9]. Section 4 contains the main results of our paper:

the microscopic probability for absorption, determination of the time scales for applica-

bility of Fermi’s Golden Rule, and the analytical and numerical results for the microstate

dependent absorption cross-section for energy resolutions discussed above. Section 5 con-

tains a discussion of our results. Section 6 contains concluding remarks. In appendix A

we give details of the semiclassical calculation in the naive geometry and in appendix B

we detail the derivation of the analytic bounds for corrections to the cross-section due to

discreteness. Appendix C contains some results for Gaussian energy profiles for the probe.

– 8 –
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2 Classical absorption by “naive” geometry

In this section we will calculate the classical s-wave absorption cross-section of a massless

minimally coupled scalar φ in the geometry (1.4). An example of such a scalar is the

component h12 of the ten dimensional Einstein frame metric, where the indices refer to the

directions x1 · · ·x4 in (1.4). Our result is not new and has been obtained earlier in [26].

However, we include this calculation for comparison with the calculation of [9] which will

be summarized in the next section. The relationship between these two calculations will

be important in understanding the results that follow.

For a monochromatic wave with frequency w the scalar field is of the form

φ = S(r) exp[iwt]. (2.1)

It is easy to show that S(r) satisfies the following wave equation:

[

(f1f5)
1/2w2 +

1

r3f5
∂r(r

3f5(f1f5)
−1/2∂r

]

S(r) = 0 (2.2)

We will follow the procedure of [22, 23, 25, 31]. This involves solving the wave equation in

the Far and Near regions, defined by

Far : r À w`2

Near : r ¿ ` (2.3)

In the above equation, ` is defined in (1.7). This is the radius of the curvature of the

near-horizon geometry, which is AdS3 × S3 × T 4. To have an overlap between the two

regions we will assume that

w`¿ 1

We will match the solutions in the intermediate region:

w`2 ¿ r ¿ ` (2.4)

This will determine the ratio of the incoming and outgoing modes at infinity and therefore

the probability for absorption of a s-wave. The cross-section is obtained by folding this

with the fraction of a plane wave in the s-wave.

The details of this calculation are contained in appendix A. The final result for the

low energy absorption cross-section σcl is

σcl(w) = π3`4w (2.5)

The expression (2.5) is for a monochromatic wave. For our purposes we will need the

absorption cross-section for an incident incoherent wave characterized by a distribution

ρw0,∆w(w) of frequencies, with

∫ ∞

0
dw ρw0,∆w(w) = 1 (2.6)
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Here w0 denotes the peak of the distribution and ∆w the width. This cross-section is

simply given by

σρ,classical(w0,∆w) =

∫ ∞

0
dw ρw0,∆w(w)σcl(w) (2.7)

The integrals in (2.7) may be evaluated explicitly. Using (2.5) we finally get for the two

profiles defined in (1.17)

σL,classical(w0,∆w) = π3 `4 (∆w) GL(w0/∆w)

σG,classical(w0,∆w) =
1

2
π3 `4 (∆w) GG(w0/∆w) (2.8)

where

GL(x) = x+

(

π
2 + tan−1 x

)

1 + x
(

π
2 + tan−1 x

)

GG(x) =
2x e−x

2

+
√
π(2x2 + 1)(1 + erf(x))

e−x2 + x
√
π(1 + erf(x))

(2.9)

Using the properties of the functions GL(x), GG(x) we note that

σL,classical(w0,∆w) = π3`4
[

w0 +
(∆w)2

w0
+ · · ·

]

∆w ¿ w0 (2.10)

σL,classical(w0,∆w) = π3`4
[

π

2
(∆w) + (2− π2

4
)w0 + · · ·

]

∆w À w0 (2.11)

while

σG,classical(w0,∆w) = π3`4 [w0 + · · · ] ∆w ¿ w0 (2.12)

σG,classical(w0,∆w) = π3`4
[√

π

2
(∆w) + (4− π)w0 + · · ·

]

∆w À w0 (2.13)

3 Wave propagation in a specific microstate geometry

In this section we summarize the results of [9] for propagation of a massless scalar wave

in the geometry which corresponds to a specific class of microstates of the D1-D5 system.

The geometry is a rotating D1-D5 system with angular momentum J [32, 33] with a 6

dimensional metric

ds2 = − 1

h(r, θ)
(dt2 − dy2) + h(r, θ)f(r, θ)

(

dθ2 +
dr2

r2 + a2

)

− 2ar1r5
h(r, θ)f(r, θ)

(

cos2 θ dy dψ + sin2 θ dt dφ
)

+h(r, θ)

[(

r2+
a2r21r

2
5 cos

2 θ

(h(r, θ)f(r, θ))2

)

cos2 θdψ2+

(

r2+a2− a2r21r
2
5 sin

2 θ

(h(r, θ)f(r, θ))2

)

sin2 θdφ2
]

where

f(r, θ) = r2 + a2 cos2 θ h(r, θ) =

[(

1 +
r21

f(r, θ)

)(

1 +
r25

f(r, θ)

)]

– 10 –
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The radius of the y direction is R and the angular momentum J is given by

J =
1

2
Q1Q5

R

r1r5
a

For a = 0 we get back the naive geometry (1.4) with an infinite throat. For nonzero a

the throat is replaced by a cap.

In [9] the wave equation of a massless minimally coupled scalar was solved in this

geometry. Since there is a cap, the reflection coefficient R at infinity satisfies |R| = 1.

However, R may be written as an infinite series of terms which may be interpreted as

arising from the wave that enters the throat and repeatedly undergoes the process of

reflection by the cap and part reflection and part outward transmission at the throat. For

the s-wave and for5

w`2 ¿ R w2(r21 + r25)¿ 1 (3.1)

this expansion is (see equation (4.24) of [9])

R ∼ e−iπε − 2π2
(w`)4

16
− 4π2

(w`)4

16

∞
∑

m=1

e2πim
wRN
4J (3.2)

Here ε us a regulator which is similar to ν − 1, where ν is as in section A.

The expression (3.2) is an infinite series of terms representing waves with successive

time delays of

tdelay = 2π
∂

∂w

(

wRN

4J

)

=
πRN

2J
(3.3)

In [9] this expression was interpreted as follows. The m-th term is the contribution for a

wave which went into the throat, and re-emerged after going back and forth between the

cap and the mouth of the throat m times. The probability for entering the throat can be

then read off from (3.2)

Pthroat = 4π2
(w`)4

16
(3.4)

This is in precisely the same as the probability for absorption in the naive geometry, as

may be seen by substituting µ = 1 in (A.15).

While the above calculation has been performed for some special microstates, the les-

son is quite general. Since microstate geometries do not have any horizon, there is no

net absorption. However, for observation times tobs ¿ tdelay it appears that the system is

absorbing. For large enough R the effective absorption probability is equal to that by the

naive geometry.

The time delay tdelay has an important interpretation in the microscopic model of the

D1-D5 system in the orbifold limit. In this limit, the corresponding microstate is described,

in the notation used in (1.1) by

Nn = 2J for n =
N

2J
(3.5)

5Note that the ω which appears in [9] is equal to wR in our notation.
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and zero otherwise. Therefore in the long string picture this represents N/n long strings

each with winding number n around the compact circle of radius R. Substituting (3.5)

in (3.3) we find that

tdelay = πR n (3.6)

which is precisely the time taken by the pair of open strings produced by the incoming

wave to go around the long string and meet each other again and possibly annihilate to an

outgoing mode. This precise understanding of the time delay is an important ingredient of

the fuzzball picture for such black holes.

4 Microscopic absorption cross-section

In this section we perform the microscopic calculation of the absorption cross-section using

a Lorentzian profile for the incoming wave using a combination of analytic and numerical

techniques. The conclusions based on analytic techniques are valid for a Gaussian profile:

the corresponding results are given in appendix C.

Our calculation of the microscopic absorption cross-section is basically a repetition

of that in [4, 22, 23] for the 3-charge system. However, these papers - as well as similar

calculations for various systems in the literature - deal with the large R limit. In this limit,

the states of the system form a continuum and Fermi’s Golden Rule may be applied in a

straightforward manner. In contrast, we are interested in the effects of finiteR and therefore

the discreteness of the states. As is well known, in the presence of a monochromatic wave,

the transition probability to some excited state is not proportional to time and therefore

there is no absorption cross-section. One way to obtain a constant transition rate is to

shine the system with an incoherent beam with a finite energy width. One of our aims is

to determine the time scales where such a constant rate is obtained. Therefore we need to

be careful about retaining a finite but large time for the transition process.

In the orbifold limit, the system is equivalent to a collection of long strings. For a given

Nn satisfying (1.1) we have Nn independent long strings with length 2πnR. Let us consider

the interaction of a component of the metric h12 where (1, 2) denote two of the directions of

the torus in x1 · · ·x4 direction. From the point of view of five dimensions, this is a minimally

coupled scalar which we will denote by χ(t, y, r, θa, x
i) = χ(t, y, zm, xi), where zm, m =

1 · · · 4 are the four Cartesian coordinates in the transverse space parametrized by (r, θa).

As usual we will work in the approximation which ignores brane recoil, so that the

momentum along the transverse direction is not conserved. The interaction term in the

long string action located at zm = xi = 0 for a winding number n is

Sint =
√
2κ

∫ T

−T
dt

∫ 2πnR

0
χ(t, y, 0, 0) ∂αX

1 ∂αX2 (4.1)

where X1 and X2 denote the two transverse locations of the long string and α = (t, y). As

argued in [23] the coefficient in Sint is uniquely determined by the equivalence principle and

is independent of the details of our system. This universality of the interaction coupling

is the key to the ability to derive the numerical factor in the absorption cross-section (or
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Hawking radiation rate) for the 3-charge system in [23]. In general, e.g. for non-minimally

coupled modes, the coupling is fixed by AdS/CFT correspondence [34].

In (4.1) the field χ is normalized in the entire nine dimensional space, while the fields

X1, X2 are normalized in one spatial direction, y. Consider an initial state which is a

Ramond sector ground state of the two dimensional field theory defined by (4.1). Consider

a bulk field which has zero momenta in the y direction, as well as zero angular momentum

along the transverse S3 composed of the angles θa. To lowest order in the coupling κ,

such a bulk mode with energy E cannot change the twist sector of the system. The only

excitation it can produce is a pair of long string modes, one of which is left moving and the

other is right moving. Using standard Feynman rules the probability per unit momentum

space volume of the closed string mode for this process is given by

Pn(E, T ) =
4κ2

π V

1

ER

∞
∑

m=1

(

m

nR

)2
[

sin(E − 2m
nR )T

(E − 2m
nR )

]2

(4.2)

The momenta of the two X-quanta are ±(2m)/(nR). As expected, the transition proba-

bility does not depend on R when expressed in terms of the momenta. However, there is a

factor of (V R) in the denominator because the bulk field is normalized in the entire nine

dimensional space. The sum over m is the sum over the momenta of the long string modes.

The expression (4.2) denotes the transition probability due to a long string of winding

number n. To obtain the total transition probability for a given state labelled Nn we need

to sum over n,

P(E, T ) =
N
∑

n=1

Nn Pn(E, T ) (4.3)

4.1 Infinite R limit

.

When R is much larger than all other length scales in the problem (in particular

RÀ 1/E), the sum over m may be replaced by an integral over the momenta p = m/(nR).

In this limit the expression (4.2) becomes

Pn(E, T )→
4κ2

π V

n

E

∫ ∞

0
dp p2

[

sin(E − 2p)T

(E − 2p)

]2

(4.4)

In the limit T →∞ the factor [sin(E−2p)T (E−2p)]2 has a sharp peak around E = 2p and

may be effectively replaced by πTδ(E − 2p). The probability then becomes proportional

to the time 2T : this is the approximation involved in Fermi’s Golden Rule.

Performing the integral we get

Pn(E, T )→
4κ2

πV

nπTE

8
(4.5)

so that the cross-section for absorption for this particular long string is given by

Pn(E, T )
2T

→ κ2 nE

4V
(4.6)
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The net cross-section is therefore

σ(E)→
N
∑

n=1

Nn
κ2 nE

4V
=
κ2E

4V

N
∑

n=1

nNn =
κ2EN

4V
(4.7)

where we have used (1.1). Note that this answer is independent of Nn and therefore

independent of the particular microstate chosen. This happened because Pn became pro-

portional to n. Furthermore this is in exact agreement with the semiclassical absorption

of a monochromatic wave by the naive geometry, equation (2.5).

A more detailed discussion of the validity of the integral approximation is contained

in subsection (4.4).

4.2 Finite R: time scales

For finite R, the system has discrete energy levels and the probability for transition due

to a monochromatic wave never becomes proportional to time. However, for an incoherent

incident wave packet with an energy profile γ(E) there will be a regime where the probabil-

ity becomes proportional to time and system has a net absorption [21]. In this subsection

we will examine the time scales when the system displays absorption. The discussion in

this section is closely related to that of applicability of Fermi’s Golden Rule.

The transition probability from an initial state i to a final state f in the presence of a

monochromatic wave with energy E over a time period 2T , P̄(E, T ) is of the form

P̄(E, T ) = Fij(E)

[

sin(E −∆ω)T

(E −∆ω)

]2

(4.8)

where ∆ω stands for the difference of the energies of the initial and final states and Fij(E)

is a function of E containing matrix elements, phase space factors etc. Thus the probability

in the presence of an incoherent beam is

P̄(T ) =
∫

dE γ(E) P̄(E, T ) =
∫ ∞

0
dE Fij(E)γ(E)

[

sin(E −∆ω)T

(E −∆ω)

]2

(4.9)

When T becomes large, function [sin(E−∆ω)T/(E−∆ω)]2 is sharply peaked at E = ∆ω,

and the width of the central hump of this function at E = E0 is 1/T . If the function

Fij(E)γ(E) is slowly varying in the region of this hump, we can replace Fij(E)γ(E) →
Fij(∆ω)γ(∆ω) inside the integral in the large time limit. This effectively means that

under these circumstances one may make the replacement [sin(E −∆ω)T/(E −∆ω)]2 →
πTδ(E −∆ω) and the probability becomes proportional to time 2T . The criterion of slow

variation of Fij(E) provides a lower bound for the time of observation 2T .

Consider now the probability of transition of an initial bulk mode into a state of long

string modes when the initial bulk mode has a Lorentzian energy profile specified by a

function ρL;E0,∆E(E) (see (1.17)). The transition amplitude is obtained from (4.2), (4.3)
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and (4.9),

PL(T ) =
4κ2

πV R
KL(E0,∆E)

N
∑

n=1

Nn

∞
∑

m=1

(

m

nR

)2

×
∫ ∞

0
dE

1

[(E − E0)2 + (∆E)2]2

[

sin(E − 2m
nR )T

(E − 2m
nR )

]2

(4.10)

In writing down (4.10) we have interchanged the sum over m and the integral over E. This

assumes that at all intermediate steps we have to work with a cutoff on the upper limit of

m-summation. The function KL(E0,∆E) is the normalization factor defined in (1.16).

We want to examine the validity of Fermi’s Golden Rule for a given term in the sum

over n,m. For this we need to determine the rate of variation of the Lorentzian function

which appears in the integral over E. This is easily estimated by calculating the logarithmic

derivative of the function 1/[(E − E0)2 + (∆E)2]2 with respect to (E − E0)2. Since the

integral receives contributions only when E0 is close to 2m/(nR), it is sufficient to examine

this variation at E = E0. This derivative at E = E0 is of the order of 1/(∆E)2. Since the

width of the central peak of [sin(E − 2m/nR)T/(E − 2m/nR)]2 is 1/T , the Golden Rule

will hold when

T À 1

∆E
(4.11)

We have used first order perturbation theory in the gravitational coupling κ. This is justi-

fied when T is below an upper bound set by the inverse of the rate of transition [28]. This

is usually ensured by requiring the coupling to be small. In our case, regardless of the cou-

pling one can obtain a rough upper bound by requiring T to be less than the time taken for

the excitations of the long string to meet and have a chance to annihilate. Since these exci-

tations move at the speed of light, this is given by πnR. Thus we will implicitly assume that

T ¿ nR (4.12)

As explained in the introduction, this is consistent with the fuzzball picture.

4.3 Absorption cross-section for finite R

When the time T is in the regime determined in the previous subsection (equations (4.11)

and (4.12) ), the transition probability (4.10) is proportional to time so that there is an

absorption cross-section σL(E0,∆E),

σL(E0,∆E) =
1

2T
PL(T ) =

2κ2

V R
KL(E0,∆E)

N
∑

n=1

Nnσ̃L(n),

σ̃L(n) ≡
∞
∑

m=1

(
m

nR
)2

1

[(2mnR − E0)2 + (∆E)2]2
(4.13)

where the function KL(E0,∆E) is the normalization defined in (1.16) for the Lorentzian

profile

KL(E0,∆E) = (∆E)2 K̃L(E0/∆E)

K̃L(x) =

[

1

2
+
x

2

(π

2
+ tan−1 x

)

]−1
(4.14)
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Let us first replace the sum over m by an integral. The error involved in this replacement

is evaluated in detail in appendix B.1 and will be discussed in the following subsections.

Up to an error (B.11), we get

σ̃L(n) =
(nR)2

16

∞
∑

m=1

m2

[(m− b)2 + a2]2
≡ (nR)2

16

∞
∑

m=1

fL(m)→ (nR)2

16

∫ ∞

0
dx fL(x)

=
nR

8

[

E0
2(∆E)2

+
E20 + (∆E)2

2(∆E)3

(

π

2
+ tan−1

E0
∆E

)]

≡ σL,classical(n) (4.15)

Here

fL(x) =
x2

((x− b)2 + a2)2
, b = nRE0/2, a = nR∆E/2 (4.16)

With this, the cross-section (4.13) becomes

σL(E0,∆E) → κ2

4V
(∆E)GL

(

E0
∆E

)

∑

n

nNn

=
κ2

4V
N (∆E)GL

(

E0
∆E

)

≡ σL,classical(E0,∆E) (4.17)

where the function GL(x) has been defined in (2.9). In the second line of (4.17) we have

used (1.1). Clearly the answer is independent of the specific choice of Nn and therefore

independent of the specific microstate. Using (1.7) this is seen to be in perfect agreement

with the supergravity answer in the naive geometry (2.8).

Thus, the dependence of the cross-section on microstates is related to the difference

between the sum overm and its integral approximation. We now turn to this question in de-

tail.

4.4 Departure from classical limit for general E0

We saw above (eqs. (4.15), (4.17)) that the departure from the classical limit for the cross-

section is given by

∆σL(E0,∆E) = σL(E0,∆E)− σL,classical(E0,∆E)

=
2κ2

V R
KL(E0,∆E)

N
∑

n=1

Nn∆σ̃L(n) (4.18)

where

∆σ̃L(n) ≡ σ̃L(n)− σ̃L,classical(n) =
(nR)2

16

( ∞
∑

m=0

fL(m)−
∫ ∞

0
dx fL(x)

)

(4.19)

where fL(x) is as in (4.16).

Thus, the problem of estimating the correction ∆σL(E0,∆E) reduces to the difference

“(sum − integral)” appearing in (4.19). This is what we do below, using the McLaurin

integral estimation of sums described in section B.
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4.4.1 Estimation of ∆σ

The McLaurin integral estimation of sums leads to (see (B.11))

∆σ̃L(n) ≈ η3(n)
1

4

E20 +∆E2
(

∆E2 +
(
√

E20 +∆E2 − E0
)2)2 , −1 < η3(n) < 1 (4.20)

It is significant that the overall factor of (nR)2 in (4.19) cancels with an inverse factor

coming the estimate of the difference of the sum and the integral. The only n dependence

in (4.20) is thus in η3(n).

Using (4.18), we therefore get

∆σL(E0,∆E) =
κ2

2V R
K̃L

(

E0
∆E

)

LL

(

E0
∆E

) N
∑

n=1

Nnη3(n) (4.21)

where K̃L(x) and LL(x) have been defined in (1.19).

Since |∑N
n=1Nnη3(n)| <

∑N
n=1Nn, we have the following bound

∆σL(E0,∆E) < ∆σL,max(E0,∆E)

∆σL,max(E0,∆E) =
κ2

2V R
K̃L

(

E0
∆E

)

LL

(

E0
∆E

) N
∑

n=1

Nn (4.22)

The microstate dependence of this bound is entirely in the sum
∑N

n=1Nn.

When R∆E À 1 the integral approximation used in (4.15) is good. This may be seen

by examining the behavior of the bound (4.22). For a given E0R, and large R∆E we need

the behavior of the functions K̃L(x)LL(x) and GL(x) (defined in (2.9)) for small values of

the argument. These are given by

K̃L(x)LL(x) =
1

2
+

(

1− π

4

)

x+O(x2)

GL(x) =
π

2
+

(

2− π2

4

)

x+O(x2) (4.23)

Thus

∆σL,max(E0,∆E) ∼ κ2

2V R

1

2

N
∑

n=1

Nn

σL,classical(E0,∆E) ∼ κ2Nπ

8V
∆E (4.24)

Therefore for any Nn, i.e. any microstate, the correction goes to zero compared to

the classical answer when R∆E À 1. This is what it should be: when R∆E À 1 the

energy resolution is much larger than the level spacing for any microstate. As a result, the

incoming wave practically perceives a continuum spectrum.
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4.4.2 ∆σ for a typical state

Consider now a typical state of the system for which Nn is approximately given by (1.9).

The sum over n can now be estimated (using the same McLaurin approximation once again:

N
∑

n=1

Nn ≈
8

β
[− log(β/2) + η], 0 < η < 1 (4.25)

For large N , β is determined in (1.10). We thus obtain

∆σL,max(E0,∆E)=
κ2

2V R
K̃L

(

E0
∆E

)

LL

(

E0
∆E

)

4
√
2

π

√
N

[

1

2
log(N)−log π√

2
+η

]

(4.26)

Note that this is expected to be an upper bound on the correction. In section 4.5 we

will provide a more refined estimate for E0 = 0 based on an exact evaluation of the sum

over m and find that in this case the log(N) term is not present. For E0 6= 0 our numerical

analysis also indicates that the correction is simply proportional to
√
N .

It is worth pointing out that the emergence of
√
N is tied to the fact that the only n

dependence of ∆σ̃L(n) is in the number η3(n) which always lies between ±1.
A similar bound will be derived for an incoming Gaussian profile in appendix C.

4.4.3 Analysis of the bound

It is useful to analyse the expression (4.26) for E0 ¿ ∆E and for E0 À ∆E, and compare

the result with the leading classical answer (4.17).

E0 ¿ ∆E. For E0 ¿ ∆E we need to use the small-x expansion of the functions

K̃L(x)LL(x) and GL(x) given in (4.23) This leads to the following expansions for large N

σL,classical(E0,∆E) = N
κ2

4V

[

π

2
(∆E) +

(

2− π2

4

)

E0 +O

(

E20
(∆E)2

)]

∆σL,max(E0,∆E) =
√
N

κ2

2V R

4
√
2

π

[

1

2
+

(

1− π

4

)

E0
∆E

+O

(

E20
(∆E)2

)]

×
[

1

2
log(N)− log

π√
2
+ η

]

(4.27)

It is clear from (4.27) that compared to the classical answer, our estimate for the correction

is suppressed by a factor of 1
R
√
N∆E

term by term in an expansion in E0

∆E . Perhaps more

significantly the leading correction is independent of the energy scales. Up to the log(N)

factor, it is given by

∆σL,max(E0,∆E)|E0¿∆E = κ25

√
2

π

√
N

[

1

2
log(N)− log

π√
2
+ η

]

(4.28)

where κ25 is the five dimensional gravitational coupling

κ25 =
κ2

V R
(4.29)
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Note that the maximum value of ∆σL is consistent with (4.50) for the E0 = 0 case.

The entropy of the system is proportional to
√
N so that (up to the log N factor)

∆σL,max(E0,∆E)|E0¿∆E ∝ AH (4.30)

where AH is the area of the stretched horizon. If results similar to other 2-charge systems

also hold in our case, this is also the area of the horizon of the higher derivative corrected

black hole geometry [7, 8]. We will soon see that this leading correction is negative.

E0 À ∆E. For E0 À ∆E we need to use the large-x expansions of the functions

K̃L(x)L(x) and GL(x). These are

K̃L(x)LL(x) =
2x

π
+

1

πx
+O(1/x2)

GL(x) = x+
1

x
+O(1/x2) (4.31)

This leads to the following expansions

σL,classical(E0,∆E) = N
κ2

4V
(∆E)

[

E0
∆E

+
∆E

E0
+O

(

(∆E)2

E20

)]

∆σL,max(E0,∆E) =
√
N

κ2

2V R

4
√
2

π

[

2E0
π∆E

+
∆E

πE0
+O

(

(∆E)2

E20

)]

×
[

1

2
log(N)− log

π√
2
+ η

]

(4.32)

Once again, terms in ∆σL,max(E0,∆E) are suppressed by a factor of 1
R
√
N∆E

compared

to the classical answer term by term. The leading term is proportional to the area of the

stretched horizon (up to the log N factor), but with an additional factor of E0

∆E

∆σL,max(E0,∆E)|E0À∆E ∝ AH
E0
∆E

(4.33)

4.4.4 Numerical estimate

In this subsection we perform the summations in (4.18) and (4.19) numerically.

We attach some numerical plots of ∆σL(E0,∆E)/
√
N vs N for A ≡ πR∆E = .05

(chosen within the regime (1.13)) and various values of E0R.

Figure 1 shows that ∆σL is negative for sufficiently small E0 and that for large N the

curves behave as
√
N .

Figure 2 show that for larger values of E0, ∆σL can be both positive and negative.

Of course, the calculation of the classical cross-section itself is valid for E0R ¿ 1,

together with the other conditions (1.8)–(1.14) so perhaps only the first set of plots, E0R ≤
.25, are relevant.

4.4.5 Atypical states

So far we have only considered typical states with Nn given approximately by the ther-

mal distribution.
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5) on the y-axis which is calculated

using (4.19) and (4.18). For Nn, we have used (1.9) in which the quantity in the r.h.s. is replaced

by its nearest integer. A = π∆ER. All plots have E0R ≤ 0.25.
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Let us now briefly consider some states with atypical Nn. In particular let us suppose

that N can be represented as a product N = p q, where p, q are integers. We will consider

Nn = p δn,q (4.34)

This represents p cycles, each of length q.

In this case, (4.18) simply becomes (κ25 = κ2/(V R))

∆σL(E0,∆E) = 2p κ25 KL(E0,∆E)∆σ̃L(q) (4.35)

Since
∑

nNn = p = N/q in this case, the bound on the correction (4.22) becomes

∆σL,max(E0,∆E)|(p,q) =
κ2

2V R

N

q
K̃L

(

E0
∆E

)

LL

(

E0
∆E

)

(4.36)

Let us consider the two extreme cases:

• Untwisted sector (p, q) = (N, 1), i.e. Nn = Nδn,1 which implies N short cycles, each

of length 1. In this case ∆σL,max(E0,∆E)|(N,1) in (4.36) is proportional to N just

like the classical answer. An analysis similar to that of section (4.4.3) then shows

that the finite R corrections are now suppressed by a factor of 1/(R∆E) compared

to the classical result.

• Maximally twisted sector (p, q) = (1, N), i.e. Nn = δn,N which implies one long cycle

of length N : In this case, ∆σL,max(E0,∆E)|(1,N) in (4.36) is independent of N and

would be suppressed at least by a power of 1/(NR∆E).

In fact, a numerical estimate shows that ∆σL decays exponentially with N . To do

the numerical computation, we rewrite (4.18) for this case as

∆σL(E0,∆E)=κ25
N2

8
(R∆E)2K̃L(E0,∆E)

( ∞
∑

m=0

fL(m)−
∫ ∞

0
dxfL(x)

)

(4.37)

The result is shown for E0 = .01, A = πR ∆E = .05 in figure 3. This is consistent

with the behaviour (4.52) for E0 = 0, viz. ∆σL ∼ N exp[−N ].

We have performed numerical calculations also for general p, q. From (4.36), we find

that the correction to the classical crosssection vanishes for this case also for R∆E À 1.

Numerically, we find that the correction vanishes exponentially with large q and further-

more for values of q beyond a certain value depending on E0 and ∆E, the correction

changes sign from negative to positive.

4.5 The cross-section for E0 = 0

We now examine the expression (4.13) for the case E0 = 0. Even though the peak of the

wave packet is at zero energy, the spread ∆E is non-zero, so that the wave packet can

sample several energy levels of the system.

– 21 –



J
H
E
P
0
4
(
2
0
0
9
)
0
3
6

60 80 100 120 140
N

-0.008

-0.006

-0.004

-0.002

������������������������������������������������������������������������������
Sigma - SigmaClassical

N

e0=.01, A=.05, M=100000

Figure 3. We show (σ − σL,classical)/N vs N in units κ2
5. M denotes the upper limit in the sum

over m. A = πR∆E, e0 = RE0. The McLaurin upper bound (4.36) in this case is 0.0278431.

If we were to specialize (4.22) to E0 = 0, we would get (using K̃L(0) = 2, L(0) = 1
4)

∆σL,max(E0 = 0,∆E) =
κ2

8V R

N
∑

n=1

Nn (4.38)

For a thermal state, this would become

∆σL,max(E0 = 0,∆E) ≈ − κ2

V R

1

β
[log(β/2)− η] (4.39)

However, for E0 = 0 we can get a better estimate, since the sum in (4.15) can be

performed analytically:

∞
∑

m=1

m2

(m2 + a2)2
=

π

4a
[1 +H(2πa)]

where

H(x) ≡ 2

(ex − 1)2
{(1− x) ex − 1} = d

dx

2x

ex − 1
(4.40)

It is straightforward to check that −1 ≤ H(x) ≤ 0 for 0 ≤ x ≤ ∞. Therefore the correction

is always negative, though the total sum is of course positive.

Using a = nR∆E/2 we get

σ̃L(n) =
π R

32∆E
n [1 +H(nπR∆E)] (4.41)

The “1” in the square bracket above gives the classical expression

σ̃L,classical(n) =
π R

32∆E
n (4.42)
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which can be verified by putting E0 = 0 in the expression for σ̃L,classical(n) in (4.15). We

will see in the next subsection that for typical states the “1” term corresponds to the

“continuum limit” RÀ 1/(∆E).

Summing over n as in (4.17), we get

σL,classical(0, E0) =
πκ2

8V
(∆E)

which agrees with the classical answer σρ,classical from appropriate naive geometry, as in

equation (2.11).

Using (4.41) and (4.42) we get

∆σ̃L(n) = σ̃L(n)− σ̃L,classical(n) =
π R

32∆E
nH(nπR∆E) (4.43)

Using this in (4.18) and using KL(0,∆E) = 2(∆E)2 we get the following exact expression,

∆σL(0,∆E) =
πκ2

8V
(∆E)

N
∑

n=1

g(n), g(n) = n Nn H(πnR∆E) (4.44)

As pointed out above ∆σL(0,∆E) ≤ 0.

4.5.1 ∆σ for a typical state

The microstate dependence is in the above sum over n. We will now estimate this sum for

a typical microstate at large N . As mentioned before, in this case the occupation numbers

Nn has a thermal distribution given by (1.9). Therefore the function g(x) in (4.44) becomes

g(x) = x H(A x)
8

sinh(βx)
, β = π

√

2

N
, A = πR(∆E) (4.45)

We now again use the method of section B to obtain the estimate

N
∑

n=1

g(n) =

∫ N

1
dx g(x)− ηg(1), 0 < η < 1, (4.46)

To find this we have used (B.3) on the function −g(x) which is positive and monotonically

increasing for x > 0.

Case: R ∆E À 1. In this case both terms in the r.h.s. behave as exp(−πR ∆E). Hence

∆σL ∼ exp(−πR ∆E) (4.47)

and the cross-section becomes classical.
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Case: 1/
√

N ¿ R ∆E ¿ 1. In order to obtain non-trivial corrections to the classical

cross-section from the naive geometry, we therefore must choose R ∆E ¿ 1. Following the

considerations leading to (1.13) we will in fact estimate the r.h.s. (4.46) in the regime (1.13).

It is easy to calculate g(1):

g(1) =
1

sinh(β)

16

(eA − 1)2
{(1−A)eA − 1} ≈ 16

β
(eA − 1)−2 {(1−A)eA − 1}

For A¿ 1, we have

g(1) ≈ − 8

β

(

1− A

3
+O(A3)

)

(4.48)

The integral over g(x) in (4.46), unfortunately, cannot be computed exactly. However, in

the regime of interest here, it can be approximately evaluated, as follows.

For A < 1, 1/A > 1. Note that the function H(Ax) falls off as ∼ exp[−p] beyond
x = p/A > 1. By choosing p sufficiently large we can ignore g(x) beyond this value. Hence

we can approximate
∫ N

1
dx g(x) ≈

∫ p/A

1
dx g(x)

Also in this range βx¿ 1, hence x/ sinh(βx) ≈ 1. Using these two ingredients, we get

∫ N

1
dx g(x) ≈ 16

β A

[

p

ep − 1
− A

eA − 1

]

≈ − 16

β A
(4.49)

In the last step we have used A¿ 1 again.

Combining (4.49) and (4.48), and using the value of β, we get the final expression

∆σL(E0 = 0,∆E) ≈ −
√
N κ25

√
2

π

[

1− η′πR(∆E)

2

(

1− πR∆E

3
+O((R∆E)3)

)]

(4.50)

where in the last step we have used the fact that κ2

V R = κ25. This is a much more improved

estimate compared to (4.27). Since for large N we have β ∼ 1/
√
N , the leading term in

our regime of interest (1.13) (which includes R∆E ¿ 1 is now seen to be proportional to

AH without any log factor.

We have verified the above conclusions numerically. A sample plot is given in figure 4.

4.5.2 Atypical state

We now evaluate such departures for E0 = 0 in atypical states: which we again take as

in (4.34).

The expression (4.35) is valid once again, except that we now have an explicit expres-

sion for ∆σ̃L(n) in terms of the function H(π n R ∆E), see eq. (4.43). With this, we get

∆σL(E0,∆E) =
π

8
κ25 (R∆E)N H(q A) ∝ N H(q A) (4.51)

Here A = π R ∆E.

Thus in the maximally twisted case ((p, q) = (1, N)) we have

∆σL ∝ N exp[−N ] (4.52)
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Figure 4. ∆σL(0,∆E)/
√
N is numerically computed, using (4.44), and plotted in units of κ2

5 for

various values of A = πR∆E. The Red, Orange, Blue and Magenta curves (which go successively

down) represent A = .05, .075, .1 and .5 respectively. The curves asymptote to constant values

(−
√
2/π ≈ −.45 for small A and increases for larger values of A) and are consistent with the

analytic estimate (4.50).

whereas in the untwisted case ((p, q) = (N, 1)) we have

∆σL ∝ N

Again, as in the case of general E0, the correction is as large as the classical limit.

5 Discussion of results

The type of corrections to the microscopic cross-section we have calculated in this paper

are due to the finite size of the circle on which the D1 branes are wrapped. Note that

this is distinct from corrections due to finite N . In some cases, e.g. typical states, these

corrections are also suppressed by a power of 1/
√
N . However in other states, e.g. the

untwisted sector, these corrections are not suppressed by any power of N . In all cases,

however, they are suppressed by a power of 1/(R∆E).

To obtain these corrections one needs to perform two sums:

(i) the sum over discrete values of the momenta and

(ii) the sum over twists
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(labelled by m and n respectively in (4.13)).

For R∆E À 1 the spectrum of the system is practically continuous, and the sum over

momenta can be replaced by an integral. Once this is done, the sum over twists is trivial

since it appears as
∑

n nNn which is by definition N see (4.17). This is why the resulting

cross-section is independent of the particular microstate the system is in. The result is also

in exact agreement with the semiclassical cross-section obtained in the naive geometry.

The bounds on the corrections to this classical result have been obtained (see sec-

tion 4.4) by using McLaurin estimates for the difference between the discrete sums (i) and

(ii) and their integral approximants. For E0 = 0 the sum over m may be performed exactly

(see section 4.5), and the McLaurin estimate has been used only for the sum over n.

To understand the nature of the sum over n it is useful to consider the case E0 = 0

and consider the contribution σ̃L(n) of a given twist sector to the cross-section which is

given by (4.41). In figure 5 we have plotted σ(n) versus n, both as histograms for integer

n and their continuum approximations where n is replaced by a real number.

1. The upper histogram (and the upper curve which is the continuum approximation)

correspond to low resolution (high R ∆E). In this case the H(A n) term is negligible

and this yields the classical limit (4.42) corresponding to the naive geometry (1.4).6

2. The lower histogram corresponds to high resolution (low R ∆E) in which the H(A n)

term is appreciable. As we have argued in section 4.4, this histogram, for typical

Nn, can be replaced by its continuum approximation [8x/ sinh(β x)] (1 +H(A x)).

Since a typical Nn is used, the lower curve represents averaging over the canonical

(equivalently, microcanonical) ensemble.

The second continuum limit, obtained by averaging, yields expressions for ∆σL of

the same form as we obtain in derivative corrected supergravity.

5.1 The main results

Let us summarize our main results of our computation of corrections explained above:

1. The physically interesting regime (see eq. (1.13)) is 1 À R∆E À 1/
√
N . In this

regime, the discreteness of the system is manifest but for a typical state there are

a large enough number of energy levels in ∆E to give rise to a time independent

absorption cross-section.

(i) When the central value of the energy E0 of the incident wave is much smaller

than the width ∆E we showed that the microstate dependent correction due

to discreteness has an upper bound which is independent of all energy scales

and proportional to AH log(N) where AH is the area of the stretched horizon.

Compared to the microstate independent classical answer, this correction is

suppressed by a power of 1/(R∆E
√
N).

6Although we have used the typical value (1.9) in plotting the upper curve/histogram, we could have

used any other Nn to arrive at the naive geometry.
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Figure 5. We have plotted on the y-axis σ̃L(n) for E0 = 0, in units of π R/(32 ∆E). The upper

histogram and curve refer to σ̃L,classical(n) and its continuum approximation, respectively. In other

words the upper histogram corresponds to n [Nn] where [ ] represents nearest integer, while the upper

curve plots 8x/ sinh(β x). The lower histogram refer to the full expression, n Nn (1 +H(A n)), while

the lower curve plots the function [8x/ sinh(β x)] (1 +H(A x)) The upper curve corresponds to the

naive geometry which arises due to low resolution (large A ≡ R ∆E) while the lower curve refers

to a different continuum which arises due to averaging over microstates.

(ii) A better bound has been obtained for E0 = 0, the correction is bounded by

simply AH without the log(N) factor. The sign of the correction is negative.

Note, however, that the total cross-section is explicitly positive since it is a sum

of positive terms. Of course, in our approximation there is never a domain where

the correction is bigger than the classical term.

(iii) For general small E0R, we have numerically calculated the difference between

the cross-section and its classical limit for a typical state. The results show that

this difference is negative and proportional to AH .

(iv) For larger values of E0R a numerical calculation for the correction yields a

positive term proportional to AH . However this is not in our regime of interest.

2. We have also obtained estimates for the correction for some atypical states. For

the untwisted sector we found that the bound on the finite R correction has the

same N dependence as the classical result. The correction is now suppressed by a

power of 1/(R∆E). For the maximally twisted sector, the bound on the correction

is independent of N . However numerical results of the correction indicate that this

is actually suppressed exponentially in N compared to the classical result.

3. The bounds for the correction for a Gaussian profile are similar to those for a

Lorentzian profile. In particular, for typical states the bound is proportional to√
N . The proportionality constant becomes a pure number for E0 ¿ ∆E and linear
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in E0

∆E for E0 À ∆E. It is likely that there is a large class of energy profiles for which

similar results will hold.

5.2 Appearance of area of stretched horizon

Perhaps the most significant aspect of our results is the fact that for typical states the

correction to the naive geometry answer is proportional to the area of the stretched hori-

zon. This is because the results of [7, 8] indicate that higher derivative terms lead to a

modification of the geometry near the singular horizon of the naive geometry. The modi-

fied geometry has in fact a regular horizon whose area is exactly equal to the area of the

stretched horizon of the naive geometry, AH .

It is tempting to speculate that the correction term somehow captures this modified

geometry with a horizon. We do not have a good understanding of the bulk interpretation

of such a correction. The fact that the sign of the correction is negative in most cases

we studied numerically, also needs an understanding from the bulk viewpoint, since the

general result of [25] would seem to suggest that the zero-frequency limit of the crosssection

should be given by the area of the geometry in the higher derivative theory and should

hence be a positive quantity.7 One possible interpretation of our result8 is that the higher

derivative correction to the geometry is equivalent to putting a translucent wall deep down

the AdS3 throat of the naive geometry. Since such a wall will reflect part of the wave which

has entered the AdS3 throat, the fraction which would enter this horizon will be less than

the fraction of incoming waves at infinity which entered the throat. This would naturally

explain why the corrected cross-section is smaller than the classical cross-section, which

measures the probability to enter the throat. If this is the case, it is not unlikely that

the effect will bring in a factor proportional to the area of the horizon of the effective

geometry, assuming such a geometry does indeed arise in our situation due to higher

derivative corrections to gravity. This is of course a vague explanation at this point. We

hope to form a more concrete picture in the future.

The space-time interpretation of the subleading corrections for atypical states is, how-

ever, quite different. A given atypical state corresponds to a specific microstate geometry

and the microscopic cross-section corresponds to the probability of entering the throat

region. Consider for example the microstates of the type analyzed in sections (4.4.5)

and (4.5.2). The bulk descriptions of these microstates have been discussed in section 3.

As shown there, the leading answer for this quantity (in the regime described by (3.1)

simply reproduces the answer in the naive geometry. The calculations in [9] and [29] give

an answer valid in a less restrictive regime where the second equation in (3.1) is not nec-

essary. However since we are interested in finite R corrections, our calculation should be

compared to a more refined calculation of scattering of an incoherent beam with a finite

energy resolution in such geometries. We defer this calculation for future work.

7The result may not apply, though, if the scalar we considered ceases to remain minimally coupled to

gravity as we turn on the higher order corrections.
8This possibility was suggested to us by Samir Mathur.
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5.3 Averaging and horizons

A key feature of our results which is worth emphasizing is that for sufficiently large R(∆E),

i.e. low energy resolutions, the scattering experiment discussed in this paper perceives the

naive geometry for any microstate of the system.9 The effect of statistical coarse graining

over microstates is present in the subleading term. This term certainly does not correspond

to scattering in the naive geometry. If anything, this corresponds to a geometry corrected

by higher derivative effects. If results similar to [7, 8] hold in this case, the latter geometry

has a regular horizon whose Wald entropy agrees with the microscopic entropy.

5.3.1 Comparison with the 3-charge D1-D5-P system

This situation should be contrasted with leading order scattering from a D1-D5-P system

with macroscopic amount of momentum in the D1 direction as in [4, 22, 23]. Here the

relevant microstates correspond to momentum states of the long string all moving in the

same direction (which we will call right moving). Now the probability for absorption is a

modification of (4.2) and (4.3)

P(E, T ) =
N
∑

n=1

Nn
4κ2

π V

1

ER

∞
∑

m=1

(

m

nR

)2

ρP (m/nR)

[

sin(E − 2m
nR )T

(E − 2m
nR )

]2

(5.1)

where ρP (m/nR) is the distribution function of rightmoving momentum among the quanta.

This must satisfy
M
∑

m=1

m

nR
ρP (m/nR) = PR (5.2)

where PR is the total right moving momentum.

In the leading approximation where the discreteness can be ignored, and for long time

scales the cross-section then becomes

σ3charge(E) =
κ2E

4V

N
∑

n=1

ρP (E/2)nNn (5.3)

The microstates are now specified by two distribution functions, Nn for the twists and ρ(p)

for the momenta. The calculations of [4, 22, 23] were performed for a typical state from

the point of view of the ensemble defined by ρP (p). Then ρP (p) has a thermal form

ρP (p) =
1

ep/TR − 1
(5.4)

where TR is the right moving temperature which is related to the total momentum PR by

requiring (5.2). Then for E ¿ TR one may approximate

ρP (E/2) ∼
2TR
E

(5.5)

9This is the analog of the observation of [17] that correlation functions in any microstate reproduce the

AdS correlators for sufficiently short times.
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The factor of E in the denominator then cancels the factor of E in the numerator in (5.3),

and using the fact TR is proportional to the entropy of the system, which in turn is pro-

portional to the horizon area, one gets the result that the cross-section is in fact exactly

equal to the horizon area.

Clearly, this result follows only in a typical state. In other words, a statistical averaging

over microstates has been performed in addition to coarse-graining due to low resolution of

energies to obtain this leading order result.

The key difference between the 2-charge system and the 3-charge system in five di-

mensions is that the naive geometry of the latter has a smooth large horizon (for large

charges). This suggests a connection between statistical averaging and horizons in the

type of scattering experiments we have considered in this paper.

5.3.2 Comparison with scattering from massive heterotic BPS states

In [35, 36] scattering of a massless probe, e.g. a graviton, from a massive heterotic BPS

state [2] was considered. The “microstate” of the BPS state is given by a polarization

tensor ζ. There are many choices of ζ (called ζL in these references), typically of a large

rank, which all correspond to a given mass m and charges ~Q. The state of the probe is

specified by a polarization η (of rank 1 or 2). Let us consider for simplicity a process in

which the polarizations ζ and η do not change. The structure of the elastic scattering

amplitude (at small α′t) is given by terms such as

A(s, t, u) ∼ a

α′t
+ b ηpζpij..klζrij..klηr +O(α′t)

=
1

α′t

(

a+ b ηpζpij..klζrij..klηr α
′t+ o(α′t)2

)

(5.6)

where a, b are numerical factors. In [35] it was shown that the leading term in the small t ex-

pansion matched exactly the Rutherford scattering limit of the same probe scattered by the

corresponding heterotic black hole [2]. The subleading term, however, has a coupling be-

tween the polarization states of the probe and the target BPS state. It was noted in [35] that

1. the low energy term ∼ 1/(α′t) is independent of the microstate and is reproduced by

the “naive” heterotic black hole geometry, and

2. the subleading term depends on the “microstate” and violates the no-hair property.

However, the new point we want to make here is that if we “average” over various

“microstates”, denoted in the sum below by a label q stuck to the polarization tensors ζ,

the subleading term becomes

∑

q

ηpζ
(q)
pij..klζ

(q)
rij..klηr = ηpηrδpr = 1

leading to a new ‘geometric’ (microstate-independent) expression

A(s, t, u) ∼ 1

α′t

(

a+ bα′t+ o(α′t)2
)
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It may be interesting to note the similarity to the scattering off the 2-charge D1-D5 sys-

tem we consider in this paper. It is interesting to find out if the microstate-dependent

subleading term can be understood in terms of some microstate geometry. It will also

be interesting to find out if the geometric expression for the subleading term above cor-

responds to a finite area horizon which arises out of higher derivative corrections in the

supergravity effective action.

6 Concluding remarks

We have performed a detailed analysis of the microstate dependence of scattering from

the two charge system in five dimensions. Microscopic calculations of the absorption cross-

sections for a large class of string theory black holes are almost identical to the present case.

This suggests that one should perform a similar study for other black holes. In particular

the 3-charge system in five dimensions is a straightforward generalization of the 2-charge

system (the main formula is given above in (5.1). Our methods can be easily adapted to this

case. It would be interesting to see whether corrections to the classical answer (which again

comes from the difference of the expression (5.1) and its integral approximation) reflect the

change of the geometry due to higher derivative supergravity effects. Our considerations

can be also directly applied to the 3- and 4- charge systems in four dimensions.

The outstanding open problem here which needs to be addressed in future work is the

bulk understanding of our microstate dependent corrections. For typical states, we have

offered a very qualitative speculation in this regard, but clearly a lot more work is needed

to obtain a precise correspondence. It is also important to understand the relationships of

the corrections we have computed for specific microstates to more refined calculations of

wave propagation in microstate geometries, as discussed in the previous section.

Finally we emphasize that all our results are in the orbifold limit of the CFT. It is

important to find out possible modifications of the result in the presence of deformations.
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A Absorption cross-section in the naive geometry

Consider the wave equation (2.2)
[

(f1f5)
1/2w2 +

1

r3f5
∂r(r

3f5(f1f5)
−1/2∂r

]

S(r) = 0 (A.1)

Far region. The geometry of the far region is flat space-time, and the equation becomes
[

w2 +
1

r3
∂rr

3∂r

]

S = 0 (A.2)

The solution is

S(r) =
1

ρ
[AJ1(ρ) +BY1(ρ)] (A.3)

where ρ = wr. To avoid complications coming from integer order Bessel functions we

will consider in fact the general case where the transverse dimension is (q + 1). Then the

solution is given by

S(r) =
1

ρν
[AJν(ρ) +B J−ν(ρ)] (A.4)

where ν = 1
2(q − 1) is assumed to be non-integral. At ρ→∞, using the standard asymp-

totics for Bessel functions we get

S(r) ∼ 1

ρν+
1

2

[

C eiρ +De−iρ
]

(A.5)

where
C

D
= e−i

π
2

1 + B
Ae

iπν

1 + B
Ae
−iπν (A.6)

The probability of absorption is then given by

P = 1−
∣

∣

∣

∣

C

D

∣

∣

∣

∣

2

=
4Im (BA ) sin(πν)

1 + |AB |2 + B
Ae
−iπν + B?

A? e
−iπν (A.7)

Near region. In the near region, defined in (2.3), we get the (Poincare patch of the)

AdS3 × S3 × T 4 geometry, and (2.2) becomes
[

w2 +
r

`4
∂rr

3∂r

]

S = 0 (A.8)

As above, we will consider the generalized case of AdSp+2 × Sq × T 4 so that the equation

becomes
[

w2 +

(

`

r

)p−2
∂r

(

r

`

)p+2

∂r

]

S = 0 (A.9)

The surface r = 0 is the “Poincare horizon”. We will consider solutions which are ingoing

at r = 0. This is given by

S(r) = E

(

w`2

r

)µ

H(1)
µ

(

w`2

r

)

µ =
p+ 1

2
(A.10)

In the limit r → 0 this solution behaves as

S → ei
w`2

r (A.11)
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Intermediate region. In the intermediate region, we have to use the large r behavior

of (A.10) and the small r behavior of (A.4) and match the two solutions. The small r

behavior of (A.4) is

S ∼ A

2ν Γ(1 + ν)
+

B 2ν

ρ2ν Γ(1− ν) (A.12)

while the large r behavior of (A.10) is

S ∼ iE

sin(πµ)

[

(w`2)2µ e−iπµ

r2µ 2µ Γ(1 + µ)
− 2µ

Γ(1− µ)

]

(A.13)

Matching and cross-section. The expressions (A.13) and (A.12) can be matched if

µ = ν, i.e. q = p + 2. For our present case p = 1, so that µ = ν = 1. However, we will

retain a general µ, ν. Matching then yields

B

A
= − e−iπµ

24µ [Γ(1 + µ)]2
[Γ(1− ν)]2 (w`)4µ (A.14)

Using µ = ν this give the following expression for the probability of absorption (A.7)

P =
4π2

[Γ(µ)]2
(w`)4µ

24µ [Γ(1 + µ)]2
(A.15)

The cross-section σcl is obtained by multiplying this quantity by the fraction of a spherical

wave which is in a plane wave. For a q + 1 dimensional transverse space this gives

σcl = P (4π)
q−1

2 Γ

(

q + 1

2

)

1

wq
(A.16)

Substituting (A.15) we finally get

σcl =
4π2(4π)µ

[Γ(µ)Γ(1 + µ)]2 Γ(1+µ)
24µ

w2µ−1 `4µ
(A.17)

For our present case, µ = ν = 1 yields

σcl = π3`4w (A.18)

which is (2.5).

B McLaurin integral approximation for sums

The McLaurin integral approximation states that if a function fL(x) is positive and mono-

tonically decreasing in P ≤ x ≤ Q, the following is true

∫ Q

P
dx fL(x) + fL(P ) >

Q
∑

n=P

fL(i) >

∫ Q

P
dx fL(x) + fL(Q), (B.1)

We can rewrite the above in the form of an estimate for the sum:

Q
∑

n=P

fL(i) =

∫ Q

P
dx fL(x) + fL(Q) + η1 (fL(P )− fL(Q)) , 0 < η1 < 1 (B.2)
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Similarly, for a positive monotonically increasing function fL(x) in P
′ ≤ x ≤ Q′, we get

Q′
∑

n=P ′

fL(i) =

∫ Q′

P ′
dx fL(x) + fL(P

′) + η2
(

fL(Q
′)− fL(P ′)

)

, 0 < η2 < 1 (B.3)

Using these two results we can find integral estimates for sums, for any function fL(x) with

a finite number of minima and maxima, as we will do now.

B.1 Details of estimation of ∆σ̃L(n)

We will use the notation

I(P,Q) =

∫ Q

P
dx fL(x), S(P,Q) =

Q
∑

m=P

fL(m).

Let us apply the McLaurin integral estimates above to (4.19) which we rewrite as

∆σ̃L(n) =
(nR)2

16
[S(0,∞)− I(0,∞)] (B.4)

In 0 < x <∞ the function fL(x) is positive and has one extremum, viz. a maximum at

x1 =
√

a2 + b2 (B.5)

Thus, fL(x) is monotonically increasing in the segment x ∈ (0, x1) and monotonically

decreasing in the segment x ∈ (x1,∞).

In segment (0, n1) ⊂ (0, x1) we use (B.3) and obtain

S(0, n1) = I(0, n1) + η1 fL(n1), 0 < η1 < 1 (B.6)

Here n1 = bx1c denotes the integer part of x1.

In segment (n1 + 1,∞) ⊂ (x1,∞) we use (B.2) and have (using fL(∞)→ 0)

S(n1 + 1,∞) = I(n1 + 1,∞) + η2 fL(n1 + 1), 0 < η2 < 1 (B.7)

Combining the last two equations, we get

S(0,∞) = I(0,∞)− I(n1, n1 + 1) + η1 fL(n1) + η2 fL(n1 + 1) (B.8)

We can approximate10 I(n1, n1 + 1) ≈ fL(n1) ≈ fL(n1 + 1) ≈ fL(x1). Thus,

S(0,∞)− I(0,∞) ≈ fL(x1) η3, η3 = η1 + η2 − 1 ∈ (−1, 1) (B.9)

By using this in (B.4), and the value

fL(x1) =
b2 + a2

(a2 + (
√
b2 + a2 − b)2)2

, (B.10)

with (a, b) as in (4.16), we obtain

∆σ̃L(n) ≈ η3(n)
1

4

E20 +∆E2
(

∆E2 +
(
√

E20 +∆E2 − E0
)2)2 (B.11)

We have displayed the possible dependence of the fraction η3 on a, b and hence on n.

10Subleading corrections to this approximation are given by replacing fL(x) = fL(x1) + f ′′(x1)(x −

x1)
2/2 + · · · and are down by additional factors of O(1/a2) for large a.
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C Results for a Gaussian profile

In this section we give the results for the upper bound on the correction to the cross-section

when we use a Gaussian profile of the form given in (1.17).

In this case, the absorption cross-section σL(E0,∆E) becomes, instead of (4.13),

σG(E0,∆E) =
2κ2

V R
KG(E0,∆E)

N
∑

n=1

Nnσ̃G(n),

σ̃G(n) ≡
∞
∑

m=1

(
m

nR
)2exp

[

−(2mnR − E0)2
(∆E)2

]

(C.1)

where the function KG(x) is the normalization defined in (1.16) for the Gaussian profile

KG(E0,∆E) =
2

(∆E)2
K̃G(E0/∆E) (C.2)

and K̃G(x) has been defined in (1.21). When the sum over m is replaced by an integral

we once again recover the classical answer (2.8), exactly as in equation (4.15)–(4.17). The

function which appears in the integral is now fG(x) (instead of fL(x) of (4.16)),

fG(x) = x2 exp

[

−(x− b)2
a2

]

(C.3)

where a and b are defined in (4.16).

The departure from the classical limit is now given by

∆σG(E0,∆E) = σG(E0,∆E)− σG,classical(E0,∆E)

=
2κ2

V R
KG(E0,∆E)

N
∑

n=1

Nn∆σ̃G(n) (C.4)

where

∆σ̃G(n) ≡ σ̃G(n)− σ̃G,classical(n) =
1

(nR)2

( ∞
∑

m=0

fG(m)−
∫ ∞

0
dx fG(x)

)

(C.5)

The function fG(x) is quite similar to fL(x). In 0 < x < ∞ this is positive with a

single maximum at x = x2,

x2 =
1

2

[

b+
√

b2 + 4a2
]

(C.6)

The arguments of section (B) then show that an upper bound for ∆σ̃G(n) is given in terms

of fG(x2), exactly as in (B.9). This leads to

∆σ̃G(n) ≈
η4(n)

4
(∆E)2





(

E0
∆E

+

√

4 +
E20

(∆E)2

)2

exp

{

− 1

4

(

√

4 +
E20

(∆E)2
− E0

∆E

)2
}





(C.7)
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where −1 < η4(n) < 1. Exactly as in (4.20), the factors of (nR) have cancelled and the

only n dependence is in η4(n). Furthermore, the factor of (∆E)2 in (C.7) cancels an overall

factor of 1/(∆E)2 present in KG(E0,∆E) in (C.2) leading to the final bound, which is the

analog of (4.22),

∆σG,max(E0,∆E) =
4κ2

V R
K̃G

(

E0
∆E

)

LG

(

E0
∆E

) N
∑

n=1

Nn (C.8)

where the function LG(x) is defined in (1.21).

As in the case of a Lorentzian profile, the microstate dependence of this bound is

entirely in the sum
∑N

m=1Nn. For a typical state this sum can be estimated as in (4.25).

This leads to the final expression for the bound in (1.20).

For E0 ¿ ∆E, we have the expansion

K̃G

(

E0
∆E

)

LG

(

E0
∆E

)

=
4

e

[

1 + (2−
√
π)

E0
∆E

+ · · ·
]

(C.9)

This means that for typical states we have

∆σG,max(E0,∆E)|E0¿∆E ∝ AH (C.10)

just like the Lorentzian profile result (4.30). For E0 À ∆E

K̃G(x) ∼
1

x
LG(x) ∼ x2 (C.11)

so that

∆σG,max(E0,∆E)|E0À∆E ∝ AH
E0
∆E

(C.12)

similar to (4.33).
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